Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1339864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444530

RESUMO

Peanut is a critical food crop worldwide, and the development of high-throughput phenotyping techniques is essential for enhancing the crop's genetic gain rate. Given the obvious challenges of directly estimating peanut yields through remote sensing, an approach that utilizes above-ground phenotypes to estimate underground yield is necessary. To that end, this study leveraged unmanned aerial vehicles (UAVs) for high-throughput phenotyping of surface traits in peanut. Using a diverse set of peanut germplasm planted in 2021 and 2022, UAV flight missions were repeatedly conducted to capture image data that were used to construct high-resolution multitemporal sigmoidal growth curves based on apparent characteristics, such as canopy cover and canopy height. Latent phenotypes extracted from these growth curves and their first derivatives informed the development of advanced machine learning models, specifically random forest and eXtreme Gradient Boosting (XGBoost), to estimate yield in the peanut plots. The random forest model exhibited exceptional predictive accuracy (R2 = 0.93), while XGBoost was also reasonably effective (R2 = 0.88). When using confusion matrices to evaluate the classification abilities of each model, the two models proved valuable in a breeding pipeline, particularly for filtering out underperforming genotypes. In addition, the random forest model excelled in identifying top-performing material while minimizing Type I and Type II errors. Overall, these findings underscore the potential of machine learning models, especially random forests and XGBoost, in predicting peanut yield and improving the efficiency of peanut breeding programs.

2.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100514

RESUMO

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Assuntos
Sorghum , Sorghum/genética , Genética Reversa , Melhoramento Vegetal , Mutação , Fenótipo , Grão Comestível/genética , Metanossulfonato de Etila/farmacologia , Genoma de Planta/genética
3.
Front Plant Sci ; 14: 1304822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152141

RESUMO

Introduction: A fundamental developmental switch for plants is transition from vegetative to floral growth, which integrates external and internal signals. INDETERMINATE1 (Id1) family proteins are zinc finger transcription factors that activate flowering in grasses regardless of photoperiod. Mutations in maize Id1 and rice Id1 (RID1) cause very late flowering. RID1 promotes expression of the flowering activator genes Early Heading Date1 (Ehd1) and Heading date 1 (Hd1), a rice homolog of CONSTANS (CO). Methods and results: Mapping of two recessive late flowering mutants from a pedigreed sorghum EMS mutant library identified two distinct mutations in the Sorghum bicolor Id1 (SbId1) homolog, mutant alleles named sbid1-1 and sbid1-2. The weaker sbid1-1 allele caused a 35 day delay in reaching boot stage in the field, but its effect was limited to 6 days under greenhouse conditions. The strong sbid1-2 allele delayed boot stage by more than 60 days in the field and under greenhouse conditions. When sbid1-1 and sbid1-2 were combined, the delayed flowering phenotype remained and resembled that of sbid1-2, confirming late flowering was due to loss of SbId1 function. Evaluation of major flowering time regulatory gene expression in sbid1-2 showed that SbId1 is needed for expression of floral activators, like SbCO and SbCN8, and repressors, like SbPRR37 and SbGhd7. Discussion: These results demonstrate a conserved role for SbId1 in promotion of flowering in sorghum, where it appears to be critical to allow expression of most major flowering regulatory genes.

4.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836142

RESUMO

Mutagenesis is a proven, classical technique for inducing a broad spectrum of DNA variations and has led to the creation of thousands of improved varieties in many crop species [...].

5.
Plants (Basel) ; 12(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111885

RESUMO

Sorghum (Sorghum bicolor) is the fifth most important cereal crop worldwide; however, its utilization in food products can be limited due to reduced nutritional quality related to amino acid composition and protein digestibility in cooked products. Low essential amino acid levels and digestibility are influenced by the composition of the sorghum seed storage proteins, kafirins. In this study, we report a core collection of 206 sorghum mutant lines with altered seed storage proteins. Wet lab chemistry analysis was conducted to evaluate the total protein content and 23 amino acids, including 19 protein-bound and 4 non-protein amino acids. We identified mutant lines with diverse compositions of essential and non-essential amino acids. The highest total protein content in these lines was almost double that of the wild-type (BTx623). The mutants identified in this study can be used as a genetic resource to improve the sorghum grain quality and determine the molecular mechanisms underlying the biosynthesis of storage protein and starch in sorghum seeds.

6.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559643

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production. Extraction of cellulose from cell walls is a key process in cellulosic ethanol production, and understanding the components involved in cellulose synthesis is important for both fundamental and applied research. Despite the significance in the biofuel industry, the genes involved in sorghum cell wall biosynthesis, modification, and degradation have not been characterized. In this study, we have identified and characterized three allelic thick leaf mutants (thl1, thl2, and thl3). Bulked Segregant Analysis sequencing (BSAseq) showed that the causal mutation for the thl phenotype is in endo-1,4-ß-glucanase gene (SbKOR1). Consistent with the causal gene function, the thl mutants showed decreased crystalline cellulose content in the stem tissues. The SbKOR1 function was characterized using Arabidopsis endo-1,4-ß-glucanase gene mutant (rsw2-1). Complementation of Arabidopsis with SbKOR1 (native Arabidopsis promoter and overexpression by 35S promoter) restored the radial swelling phenotype of rsw2-1 mutant, proving that SbKOR1 functions as endo-1,4-ß-glucanase. Overall, the present study has identified and characterized sorghum endo-1,4-ß-glucanase gene function, laying the foundation for future research on cell wall biosynthesis and engineering of sorghum for biofuel production.

7.
Front Plant Sci ; 13: 923734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755652

RESUMO

Chinese sorghum (S. bicolor) has been a historically critical ingredient for brewing famous distilled liquors ever since Yuan Dynasty (749 ∼ 652 years BP). Incomplete understanding of the population genetics and domestication history limits its broad applications, especially that the lack of genetics knowledge underlying liquor-brewing properties makes it difficult to establish scientific standards for sorghum breeding. To unravel the domestic history of Chinese sorghum, we re-sequenced 244 Chinese sorghum lines selected from 16 provinces. We found that Chinese sorghums formed three distinct genetic sub-structures, referred as the Northern, the Southern, and the Chishui groups, following an obviously geographic pattern. These sorghum accessions were further characterized in liquor brewing traits and identified selection footprints associated with liquor brewing efficiency. An importantly selective sweep region identified includes several homologous genes involving in grain size, pericarp thickness, and architecture of inflorescence. Our result also demonstrated that pericarp strength rather than grain size determines the ability of the grains to resist repeated cooking during brewing process. New insight into the traits beneficial to the liquor-brewing process provides both a better understanding on Chinese sorghum domestication and a guidance on breeding sorghum as a multiple use crop in China.

8.
Mol Plant Microbe Interact ; 35(9): 755-767, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35394339

RESUMO

The precursors and derivatives of jasmonic acid (JA) contribute to plant protective immunity to insect attack. However, the role of JA in sorghum (Sorghum bicolor) defense against sugarcane aphid (SCA) (Melanaphis sacchari), which is considered a major threat to sorghum production, remains elusive. Sorghum SC265, previously identified as a SCA-resistant genotype among the sorghum nested association mapping founder lines, transiently increased JA at early stages of aphid feeding and deterred aphid settling. Monitoring of aphid feeding behavior using electropenetrography, a technique to unveil feeding process of piercing-sucking insects, revealed that SC265 plants restricted SCA feeding from the phloem sap. However, exogenous application of JA attenuated the resistant phenotype and promoted improved aphid feeding and colonization on SC265 plants. This was further confirmed with sorghum JA-deficient plants, in which JA deficiency promoted aphid settling, however, it also reduced aphid feeding from the phloem sap and curtailed SCA population. Exogenous application of JA caused enhanced feeding and aphid proliferation on JA-deficient plants, suggesting that JA promotes aphid growth and development. SCA feeding on JA-deficient plants altered the sugar metabolism and enhanced the levels of fructose and trehalose compared with wild-type plants. Furthermore, aphid artificial diet containing fructose and trehalose curtailed aphid growth and reproduction. Our findings underscore a previously unknown dichotomous role of JA, which may have opposing effects by deterring aphid settling during the early stage and enhancing aphid proliferative capacity during later stages of aphid colonization on sorghum plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Saccharum , Sorghum , Animais , Ciclopentanos , Frutose , Oxilipinas , Plantas , Sorghum/genética , Trealose
9.
10.
Planta ; 255(2): 35, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35015132

RESUMO

MAIN CONCLUSION: SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.


Assuntos
Sorghum , Bases de Dados Genéticas , Grão Comestível , Genoma de Planta/genética , Genômica , Internet , Melhoramento Vegetal , Sorghum/genética
11.
Front Plant Sci ; 12: 732307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925394

RESUMO

In sorghum (Sorghum bicolor) and other C4 grasses, brown midrib (bmr) mutants have long been associated with plants impaired in their ability to synthesize lignin. The brown midrib 30 (Bmr30) gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration. Loss of the Bmr30 gene function, as shown by histochemical staining of leaf midrib and stalk sections, resulted in altered cell wall composition. In the bmr30 mutants, CHI activity was drastically reduced, and the accumulation of total flavonoids and total anthocyanins was impaired, which is consistent with its function in flavonoid biosynthesis. The level of the flavone lignin monomer tricin was reduced 20-fold in the stem relative to wild type, and to undetectable levels in the leaf tissue of the mutants. The bmr30 mutant, therefore, harbors a mutation in a phenylpropanoid biosynthetic gene that is key to the interconnection between flavonoids and monolignols, both of which are utilized for lignin synthesis in the grasses.

12.
Planta ; 254(6): 114, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739592

RESUMO

MAIN CONCLUSION: Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.


Assuntos
Sorghum , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genômica , Melhoramento Vegetal , Sorghum/genética
13.
Planta ; 254(5): 98, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34657208

RESUMO

MAIN CONCLUSION: Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.


Assuntos
Tolerância ao Sal , Sorghum , Ecossistema , Perfilação da Expressão Gênica , Melhoramento Vegetal , Salinidade , Tolerância ao Sal/genética , Sorghum/genética , Estresse Fisiológico , Transcriptoma
14.
Planta ; 253(2): 33, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459875

RESUMO

MAIN CONCLUSION: A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance. Sorghum bicolor, a staple biomass and food crop, has been shown to selectively recruit Gram-positive bacteria (Actinobacteria) in its rhizosphere under drought conditions to enhance stress tolerance. However, the genetic/biochemical mechanism underlying the selective enrichment of specific microbial phyla in the sorghum rhizosphere is poorly known due to the lack of available mutants with altered root secretion systems. Using a subset of sorghum ethyl methanesulfonate (EMS) mutant lines, we have isolated a novel Red root (RR) mutant with an increased accumulation and secretion of phenolic compounds in roots. Genetic analysis showed that RR is a single dominant mutation. We further investigated the effect of root-specific phenolic compounds on rhizosphere microbiome composition under well-watered and water-deficit conditions. The microbiome diversity analysis of the RR rhizosphere showed that Actinobacteria were enriched significantly under the well-watered condition but showed no significant change under the water-deficit condition. BTx623 rhizosphere showed a significant increase in Actinobacteria under the water-deficit condition. Overall, the rhizosphere of RR genotype retained a higher bacterial diversity and richness relative to the rhizosphere of BTx623, especially under water-deficit condition. Therefore, the RR mutant provides an excellent genetic resource for rhizosphere-microbiome interaction studies as well as to develop drought-tolerant lines. Identification of the RR gene and the molecular mechanism through which the mutant selectively enriches microbial populations in the rhizosphere will be useful in designing strategies for improving sorghum productivity and stress tolerance.


Assuntos
Sistemas de Secreção Bacterianos , Rizosfera , Microbiologia do Solo , Sorghum , Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Mutação , Raízes de Plantas/microbiologia , Sorghum/genética , Sorghum/microbiologia
15.
Bioinformatics ; 37(3): 382-387, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32777814

RESUMO

SUMMARY: With the advance of next-generation sequencing technologies and reductions in the costs of these techniques, bulked segregant analysis (BSA) has become not only a powerful tool for mapping quantitative trait loci but also a useful way to identify causal gene mutations underlying phenotypes of interest. However, due to the presence of background mutations and errors in sequencing, genotyping, and reference assembly, it is often difficult to distinguish true causal mutations from background mutations. In this study, we developed the BSAseq workflow, which includes an automated bioinformatics analysis pipeline with a probabilistic model for estimating the linked region (the region linked to the causal mutation) and an interactive Shiny web application for visualizing the results. We deeply sequenced a sorghum male-sterile parental line (ms8) to capture the majority of background mutations in our bulked F2 data. We applied the workflow to 11 bulked sorghum F2 populations and 1 rice F2 population and identified the true causal mutation in each population. The workflow is intuitive and straightforward, facilitating its adoption by users without bioinformatics analysis skills. We anticipate that the BSAseq workflow will be broadly applicable to the identification of causal mutations for many phenotypes of interest. AVAILABILITY AND IMPLEMENTATION: BSAseq is freely available on https://www.sciapps.org/page/bsa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Internet , Mutação , Sorghum/genética , Fluxo de Trabalho
16.
Plant Direct ; 4(11): e00281, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33210074

RESUMO

GIGANTEA (GI) is a conserved plant-specific gene that modulates a range of environmental responses in multiple plant species, including playing a key role in photoperiodic regulation of flowering time. The C4 grass Sorghum bicolor is an important grain and subsistence crop, animal forage, and cellulosic biofuel feedstock that is tolerant of abiotic stresses and marginal soils. To understand sorghum flowering time regulatory networks, we characterized the sbgi-ems1 nonsense mutant allele of the sorghum GIGANTEA (SbGI) gene from a sequenced M4 EMS-mutagenized BTx623 population. sbgi-ems1 plants flowered later than wild type siblings under both long-day or short-day photoperiods. Delayed flowering in sbgi-ems1 plants accompanied an increase in node number, indicating an extended vegetative growth phase prior to flowering. sbgi-ems1 plants had reduced expression of floral activator genes SbCO and SbEHD1 and downstream FT-like florigen genes SbFT, SbCN8, and SbCN12. Therefore, SbGI plays a role in regulating SbCO and SbEHD1 expression that serves to accelerate flowering. SbGI protein physically interacts with the sorghum FLAVIN-BINDING, KELCH REPEAT, F-BOX1-like (SbFFL) protein, a conserved flowering-associated blue light photoreceptor, and the SbGI-SbFFL interaction is stimulated by blue light. This work demonstrates that SbGI is an activator of sorghum flowering time upstream of florigen genes under short- and long-day photoperiods, likely in association with the activity of the blue light photoreceptor SbFFL. SIGNIFICANCE STATEMENT: This study elucidates molecular details of flowering time networks for the adaptable C4 cereal crop Sorghum bicolor, including demonstration of a role for blue light sensing in sorghum GIGANTEA activity. This work validates the utility of a large publicly available sequenced EMS-mutagenized sorghum population to determine gene function.

17.
Nat Commun ; 11(1): 5138, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046693

RESUMO

Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae.


Assuntos
Hordeum/metabolismo , Inflorescência/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Inflorescência/genética , Inflorescência/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transdução de Sinais
18.
Planta ; 252(4): 62, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32965567

RESUMO

MAIN CONCLUSION: Linolenic acid produced by the ω-3 fatty acid desaturase MSD3 in sorghum is used for insect-induced jasmonic acid production and is important for resistance against Spodoptera frugiperda. Jasmonic acid (JA) is a phytohormone that regulates both plant development and stress responses. In sorghum (Sorghum bicolor), the ω-3 fatty acid desaturase Multiseeded3 (MSD3) and the 13-lipoxygenase Multiseeded2 (MSD2) are important for producing JA to regulate panicle development and spikelet fertility, but their function in plant defense remains unknown. In this study, we examined whether these genes are important for the production of JA in response to herbivory by the insect pest Spodoptera frugiperda. Compared to wild-type controls, the msd3 mutant accumulated less JA in leaves of both infested and uninfested plants, revealing that MSD3 is involved in stress-induced JA production. In contrast, herbivore-induced JA production in the msd2 mutant was indistinguishable from wild type, indicating that MSD2 does not function in herbivore-induced JA production. An increase of S. frugiperda growth was observed on both the msd3 and msd2 mutants, hinting at roles for both JA and additional oxylipins in sorghum's defense responses.


Assuntos
Ácidos Graxos Dessaturases , Lipoxigenase , Defesa das Plantas contra Herbivoria , Sorghum , Spodoptera , Animais , Ácidos Graxos Dessaturases/metabolismo , Herbivoria , Lipoxigenase/genética , Lipoxigenase/metabolismo , Mutação , Oxilipinas/metabolismo , Defesa das Plantas contra Herbivoria/genética , Sorghum/enzimologia , Sorghum/genética , Sorghum/parasitologia , Spodoptera/fisiologia
19.
J Exp Bot ; 71(18): 5389-5401, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32497208

RESUMO

Grain size is a major determinant of grain yield in sorghum and other cereals. Over 100 quantitative trait loci (QTLs) of grain size have been identified in sorghum. However, no gene underlying any grain size QTL has been cloned. Here, we describe the fine mapping and cloning of one grain size QTL. From an F8 recombinant inbred line population derived from a cross between inbred lines 654 and LTR108, we identified 44 grain size QTLs. One QTL, qTGW1a, was detected consistently on the long arm of chromosome 1 in the span of 4 years. Using the extreme recombinants from an F2:3 fine-mapping population, qTGW1a was delimited within a ~33 kb region containing three predicted genes. One of them, SORBI_3001G341700, predicted to encode a G-protein γ subunit and homologous to GS3 in rice, is likely to be the causative gene for qTGW1a. qTGW1a appears to act as a negative regulator of grain size in sorghum. The functional allele of the putatively causative gene of qTGW1a from inbred line 654 decreased grain size, plant height, and grain yield in transgenic rice. Identification of the gene underlying qTGW1a advances our understanding of the regulatory mechanisms of grain size in sorghum and provides a target to manipulate grain size through genome editing.


Assuntos
Oryza , Sorghum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/genética , Oryza/genética , Fenótipo , Subunidades Proteicas , Sorghum/genética
20.
J Exp Bot ; 71(4): 1598-1613, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745559

RESUMO

Gene regulation is central for growth, development, and adaptation to environmental changes in all living organisms. Many genes are induced by environmental cues, and the expression of these inducible genes is often repressed under normal conditions. Here, we show that the SHINY2 (SHI2) gene is important for repressing salt-inducible genes and also plays a role in cold response. The shi2 mutant displayed hypersensitivity to cold, abscisic acid (ABA), and LiCl. Map-based cloning demonstrates that SHI2 encodes a DEAD- (Asp-Glu-Ala-Asp) box RNA helicase with similarity to a yeast splicing factor. Transcriptomic analysis of the shi2 mutant in response to cold revealed that the shi2 mutation decreased the number of cold-responsive genes and the magnitude of their response, and resulted in the mis-splicing of some cold-responsive genes. Under salt stress, however, the shi2 mutation increased the number of salt-responsive genes but had a negligible effect on mRNA splicing. Our results suggest that SHI2 is a component in a ready-for-transcription repressor complex important for gene repression under normal conditions, and for gene activation and transcription under stress conditions. In addition, SHI2 also serves as a splicing factor required for proper splicing of cold-responsive genes and affects 5' capping and polyadenylation site selection.


Assuntos
RNA Helicases DEAD-box , Regulação da Expressão Gênica de Plantas , Ácido Abscísico , Aclimatação , Temperatura Baixa , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...